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The process of electron self-injection in the nonlinear bubble wake generated by a short and intense laser
pulse propagating in an uniform underdense plasma is studied by means of fully self-consistent particle-in-
cell simulations and test-particle simulations. We consider a wake generated by a non-evolving laser driver
traveling with a prescribed velocity, which then sets the structure and the velocity of the wake, so the
injection dynamics is decoupled from driver evolution but a realistic structure for the wakefield is retained.
We show that a threshold for self-injection into a non-evolving bubble wake exists, and we characterize the
dependence of the self-injection threshold on laser intensity, wake velocity, and plasma temperature for a
range of parameters of interest for current and future laser-plasma accelerators.
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I. INTRODUCTION

Laser-plasma accelerators (LPAs) have received signif-
icant theoretical and experimental interest in the last
several years1 due to the possibility of producing low
momentum spread (percent level) electron bunches with
up to GeV energies in a short distance (a few millime-
ters/centimeters for ∼ 0.1/1 GeV electron energy)2–5.
Their rapid development and properties make LPAs in-
teresting candidates for applications to future high en-
ergy colliders6,7 and radiation sources8–10. Most of the
LPA experiments performed so far were carried out in
the so called bubble regime11, in which the ponderomo-
tive force of a short and intense laser pulse propagating in
an underdense plasma transversally expels ambient elec-
trons along its propagation path (ions can be considered
at rest by virtue of their inertia) leading to the formation
of a trailing ellipsoidal plasma cavity moving at relativis-
tic velocity (bubble wake). Denoting by L0, I0, and λ0

the r.m.s length, peak intensity, and wavelength of the
laser pulse, respectively, the bubble regime can be ac-
cessed if kpL0 ∼ 1, where kp = ωp/c, c is the speed of

light in vacuum, ωp = (4πn0e
2/m)1/2 is the plasma fre-

quency for a plasma of density n0 (m and e are, respec-
tively, the electron mass and charge), and a0 & 2, where
a0 ≃ 8.5 · 10−10(I0[W/cm2])1/2λ0[µm] is the peak nor-
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malized vector potential of the laser. The bubble, owing
to its linearly varying longitudinal and transverse fields,
has almost ideal accelerating and focusing properties for
particles placed in the proper phase within the wake.

It has been observed in both experiments and 3D
particle-in-cell (PIC) simulations, that in some cases
electrons from the background plasma can be injected
(self-injection) and accelerated in the bubble. Even
though several techniques to promote/induce injection of
background electrons have been developed (e.g., collid-
ing pulses12,13, tailored density profiles14–16, ionization-
induced injection17,18), self-injection is by far the sim-
plest scheme from the experimental point of view. Un-
derstanding this process and the properties of the elec-
tron bunch at injection is of fundamental importance
to control, and possibly improve or optimize, the per-
formances of the LPA in view of future applications.
Despite its relevance, a conclusive theory of particle
self-injection and trapping in the 3D nonlinear bubble
regime, which is drastically different from the nonlin-
ear 1D regime19, is still missing even though several
contributions have been proposed.20,21,23,26 A numerical
study presented in Ref. 20 first suggested that injection
takes place for a sufficiently large bubble radius, namely
Rbubble > 4 (throughout the paper we use dimension-
less units, normalizing the time to ω−1

p , the lengths to

k−1
p , the fields to mcωp/e, the momenta to mc). How-

ever, the dependence of the self-injection threshold on the
wake phase velocity, which is suspected to play a ma-
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jor role in the self-injection physics, was not discussed
in this study. The self-injection process was analyzed
in Ref. 21 through an analytic model which relates the
injection condition to the bubble properties. In particu-
lar, assuming the simplified expression for the wakefield
structure given in Ref. 22, and solving for the particle
orbit in this field, it was found that self-injection occurs
when γ0 . Rbubble/

√
2, where γ0 is the Lorentz factor

associated to a bubble wake moving with a (normalized)
velocity β0. In the case where the bubble is evolving, γ0
refers to value at the back of the bubble, where injection
takes place. Assuming the relation given in Ref. 20 for
the dependence of Rbubble from the laser driver in case
of matched propagation, namely Rbubble ≃ w0 ≃ 2

√
a0,

where w0 is the laser spot size, the injection threshold
condition can be rewritten as a0 & γ2

0/2. For γ0 ∼ 5−10,
corresponding to a plasma density of n0 ∼ 1019 e/cm3,
we have a0 & 10 − 50, which is rather high and not in
accordance with both experiments and simulations. As
mentioned in Ref. 21, this discrepancy is probably due
to insufficient modeling of some key feature of the wake-
field (e.g., field enhancement at the back of the bubble
compared to the simple analytical linear expression).

A different analytical model for the self-injection is pre-
sented in Ref. 23. This model is also based on the sim-
plified expression for the wakefield structure described in
Ref. 22. However, the additional heuristic hypothesis is
made that the orbits for the electrons reaching the back
of the bubble (i.e. the ones that most likely will be in-
jected) are elliptical. The injection threshold obtained
in this case is Rbubble & 2 [ln(2γ2

0)− 1]1/2, still showing a
(weak) dependence on the wake phase velocity but with
a significantly lower injection threshold for a0 compared
to the result in Ref. 21 (in this case, for γ0 ∼ 5− 10, the
threshold for injection is a0 & 3.5−4), and therefore it is
in better agreement with experimental observations. A
critical discussion of the two analytical models of Refs.
21 and 23, focusing in particular on the admissibility of
the elliptical orbit hypothesis and its implications, can
be found in Refs. 24 and 25.

While previous studies refer to a nonevolving bubble,
all the discussed injection criteria can also be applied to
the case of an evolving bubble, provided that the correct
value for γ0, the one at the back of the bubble, is used.
In Ref. 26 Kalmykov et al. derived a sufficient condi-
tion for trapping in the case of an evolving bubble (i.e.,
size and/or shape of the bubble are not constant) using a
semianalytic nonstationary Hamiltonian theory. In par-
ticular, Kalmykov et al. showed analytically and by using
PIC simulations that self-injection can be induced by a
slow temporal expansion of the bubble. The existence of
a minimum expansion rate which ensures trapping in a
spherical bubble is also discussed.

The threshold for injection in the bubble regime has
also been investigated in experiments27,28. In particu-
lar, in Ref. 27 it has been found that at low density
(n0 ≃ 3× 1018 cm−3) self-injection occurs when P/Pc >
4, P and Pc being, respectively, the laser peak power and

the critical power for self-focusing (Pc[GW] ≃ 17ω2
0/ω

2
p,

where ω0 = 2πc/λ0). These experimental results are also
supported by fully-self-consistent 3D PIC simulations. In
Ref. 28 a detailed study of the dependence of the thresh-
old for self-injection on laser-plasma parameters such as
background plasma density, laser energy, pulse length,
and focal spot quality is presented. However, an exper-
imental approach, or even a set of fully-self-consistent
PIC simulations of the experiment, does not provide,
in general, enough insight on the self-injection mecha-
nism owing to the complex interplay between injection
physics, wake properties (phase velocity, amplitude) and
laser evolution, and lacks generality.

In this paper, we present a systematic study of the
self-injection process. We explore, by using fully-self-
consistent PIC simulations under controlled conditions,
the dependence of the injection physics from laser in-
tensity, wake velocity, and background plasma temper-
ature. In order to decouple injection physics from laser
evolution we consider the bubble wake generated by a
non-evolving Gaussian laser driver (with fixed shape and
intensity) propagating in an uniform plasma with an as-
signed velocity. Provided that the laser-plasma interac-
tion is turned on adiabatically (i.e., the transient effects
that manifest when the laser enters the plasma are sup-
pressed), the wake generated by a non-evolving driver
propagates at the driver’s velocity and its shape and am-
plitude are constant. Under these controlled conditions
we can determine when self-injection occurs and relate its
appearance to the wake velocity and laser intensity (i.e.,
wake size and amplitude). Our simulations show that an
injection threshold exists for a cold plasma, even for a
non-evolving bubble wake. In particular, for any given
bubble phase velocity, we find that injection takes place
if the laser intensity is high enough (i.e., if the bubble size
is large enough). We obtained empirically an expression
for the intensity threshold value as a function of the wake
velocity, namely a∗0(γ0). The threshold is significantly
lower than the one presented in Ref. 21, and it is in qual-
itative agreement with the one presented in Ref. 23 at
low wake velocities (γ0 . 60). For γ0 large, we find that
a∗0 grows linearly with γ0 so, as expected, self-injection
does not occur in the ultra-relativistic limit (γ0 → ∞).29

Our results assume a non-evolving laser driver. If the
driver evolves (due to diffraction, self-focusing, plasma
wave guiding, self-steepening, depletion, etc.) the bub-
ble wake velocity is no longer equal to the driver velocity
but is determined by the driver evolution.30 In this case,
as previously discussed in Ref. 21, we show that the ac-
tual bubble phase velocity, which is dramatically differ-
ent from the laser driver group velocity, is the relevant
parameter to be considered for the self-injection physics.
Finally, we investigate how the self-injection process is
modified when the plasma has an initial non-zero tem-
perature and we show that the self-injection threshold is
reduced in a warm plasma.

All our simulations have been performed with the
ponderomotive, 2D-cylindrical PIC code INF&RNO31–33.
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Simulations with different numerical resolutions and dif-
ferent numbers of particle per cell have been considered
in order to ensure reliable numerical results.
The paper is organized as follows. In Sec. II we de-

scribe the setup of our numerical calculations and we
obtain the expression for the injection threshold in a non-
evolving bubble wake for a cold plasma after presenting
some general considerations on bubble geometry/shape.
The properties of the transverse phase-space of the self-
injected particles are also discussed. The phase veloc-
ity of the bubble wake generated by a self-consistently
evolving laser pulse is discussed in Sec. III. A qualita-
tive discussion on the influence of the background plasma
temperature on the self-injection physics is discussed in
Sec. IV. Conclusions are presented in Sec. V.

II. SELF-INJECTION IN THE BUBBLE REGIME

A. Simulation set up and numerical considerations

We consider a bubble wake generated by a non-
evolving Gaussian laser-pulse propagating along the ẑ
direction in an uniform underdense cold plasma with an
assigned velocity β0. The laser envelope is described by

a(z, r, t) = a0 exp

(

− r2

w2
0

)

exp

[

− (z − z0(t))
2

4L2
0

]

, (1)

where z0(t), the laser centroid, evolves according to
dz0/dt = β0. We fixed L0 = 1, which is the linearly
resonant length, and w0 = 2

√
a0, which is, as previously

mentioned, the condition described in Ref. 20 for self-
guided propagation of a short and intense laser pulse.
If a0 > 3, the nonlinear bubble wake generated behind
the laser driver is approximately spherical with a size
Rbubble ≃ w0 = 2

√
a0.

20 Since the laser pulse is non-
evolving, the associated wake is stationary: the shape,
size, and amplitude of the electromagnetic fields in the
wake are constant and depend, nonlinearly, on a0, w0,
and L0. The velocity of the wake is also constant and
it is equal to the laser driver velocity β0.

30 Using a non-
evolving driver greatly simplifies the analysis of the injec-
tion physics. In contrast to a fully self-consistent simula-
tion of the laser-plasma interaction process, laser evolu-
tion is decoupled from injection mechanism. In these con-
trolled conditions, all the wake properties are specified
once the laser driver properties are given. By tracking
particle orbits, taking into account the ponderomotive
force from the driver and the wakefields, we can deter-
mine under which conditions certain background plasma
particles are self-injected and accelerated in the bubble.
From Refs. 21, 23–26, it is clear that the self-injection

dynamics is very sensitive to fine-scale details of the field
structure. However, accurate analytical expressions for
the electromagnetic fields in the nonlinear bubble regime
are not available29,34. To gain a better understanding of
the injection process, we decided to evaluate numerically

the wakefield structure solving the Maxwell-Vlasov equa-
tions of the laser-plasma interaction by means of a PIC
code. We used the 2D cylindrical, ponderomotive PIC
code INF&RNO to evaluate the wakefield and compute
the orbits of background plasma electrons. Cylindrical
symmetry (r − z) for both fields and particle orbits can
be assumed in case of a round ponderomotive laser driver
and a cold plasma. We performed a set of simulations for
a range of laser-plasma parameters of interest for current
and future LPA experiments. More specifically, we con-
sidered laser intensities corresponding to 2 ≤ a0 ≤ 7, and
wake velocities corresponding to 5 ≤ γ0 < 100.

In order to have well-controlled conditions and have
a wake whose properties are unambiguously determined
only by the velocity, the intensity, and the shape of the
non-evolving driver, particular care has to be taken for
the initialization of the simulation. If, for instance, we
consider in our simulation a laser pulse that impinges
from vacuum into a plasma slab, even if the driver is non-
evolving, the associated wake shows, in the early stages
of the laser-plasma interaction, time-dependent features.
This stage, where the wake sets up and is not in equi-
librium, typically requires a few tens of plasma periods.
During this phase, depending on the details of the laser-
plasma interaction, some of the background plasma elec-
trons may remain trapped in the wake. Investigation of
self-injection in these conditions is beyond the scope of
this work. Indeed, in order for our numerical experi-
ments to be successful and produce a bubble wake with
well defined driver-dependent properties, self-injection in
the early stages of the laser-plasma interaction needs to
be inhibited. The presence of trapped particles located in
the rear part of the bubble wake might affect the bubble
properties through, for instance, beam loading, making
difficult the interpretation of the results at later times
when all the wake properties reach their stationary value.
To prevent this effect, in our simulations we adiabati-
cally turn on the laser-plasma interaction so the wake is
smoothly formed. At the same time, we limit the max-
imum longitudinal velocity of the numerical particles to
a value that is lower than the actual wake phase veloc-
ity, so self-injection in early stages is inhibited. While the
laser-plasma interaction is turned on and the wake forms,
the limit on the maximum particle velocity is gradually
removed (typically this is done, for instance, by slowly
ramping up the laser intensity and adding a sufficiently
long density ramp at the entrance of the plasma). Injec-
tion of plasma particles is then fully enabled only after
the wake properties have reached a stationary value. This
procedure allows for a clean initialization of the bubble
wake so all its properties depend only on the laser driver
and any artifact related to simulation initialization is sup-
pressed.

Studying the threshold for self-injection in case of
a cold plasma using a PIC code can be numerically
challenging due to the fact that simulation results can
be affected by errors from statistical noise and finite
space/time resolution. More specifically, as shown in



4

 1  2  3  4  5  6  7  8
 0

 1

 2

 3

 4

 5

 6

 7

 



 

R‖

R⊥

2
√
a0

electron density

z − t

x

R‖

R⊥ Laser

normalized laser field strength, a0

FIG. 1. Scaling of bubble radii (see inset for definition),
R⊥ [squares] and R‖ [diamonds], with normalized laser field
strength, a0. The black dashed line is the quantity 2

√
a0

which is the theoretical bubble size proposed in Ref. 20. The
other laser-plasma parameters are L0 = 1, w0 = 2

√
a0, and

γ0 = 100. For γ0 & 10, the geometrical properties of the bub-
ble are weakly dependence on γ0, so the bubble shape can be
simply characterized by a0.

Ref. 35, PIC codes are prone to unphysical macroparti-
cle trapping due to artificial heating. In order to quantify
and keep under control these spurious numerical effects,
we performed, for any given physical problem, different
sets of simulations using different spatial resolutions and
number of particles per cell. Denoting by ∆z and ∆r,
respectively, the longitudinal and the transverse (radial)
resolution, we considered the following set of numerical
parameters in our simulations: ∆z = ∆r = 1/50 with
25 particles/cell (low-resolution case), ∆z = ∆r = 1/100
with 20 particles/cell (medium-resolution case), and, in
selected cases, ∆z = ∆r = 1/200 with 16 particles/cell
(high-resolution case). From our simulations we observe
that keeping a reasonably high transverse resolution, i.e.,
at least ∆r < 1/20, is very important to correctly capture
the main features of self-injection dynamics. In the PIC
code, force interpolation and current/charge deposition
are performed with a quadratic scheme. We also use cur-
rents smoothing performed with a (1,2,1) binomial filter
with compensator.

B. Geometrical properties of the bubble wake

We have characterized the dependence of the bubble
wake geometry from laser intensity. The wake shape/size
can be characterized by the two radii, R‖ (longitudinal)
and R⊥ (transverse), which are measured starting from

the center of the bubble (i.e., the point where all the
electromagnetic fields vanish). More specifically (see also
the inset in Fig. 1), R‖ is the length of the accelerating
part of the wake, R⊥ is the transverse width of the bubble
defined as the transverse location where plasma density,
almost zero on-axis, becomes equal to the background
value. In Fig. 1 we show the functional dependence of
R‖ and R⊥ from a0, for 2 ≤ a0 ≤ 7. The other laser-
plasma parameters were L0 = 1, w0 = 2

√
a0, γ0 = 100.

We notice that, for γ0 & 10, the geometrical properties
of the bubble are found to have a weak dependence on γ0
and so the bubble shape can be simply characterized by
the peak laser field strength a0. The black dashed line
in Fig. 1 is the theoretical expression, given in Ref. 20,
Rbubble ≃ R‖ ≃ R⊥ ≃ 2

√
a0. It is worth noticing that

the bubble shape is spherical only around a0 ≃ 3.5 (all
the models presented in Refs. 21, 23, and 26 assume a
spherical bubble), for a0 & 5 significant deviations from
the spherical shape are observed. Simulations show that
R‖ depends linearly on a0; a numerical fit gives

R‖(a0) ≃ 2.9 + 0.305 · a0. (2)

A linear dependence of R‖ on a0 can be inferred by using
the 1D nonlinear theory, in spite of the fact that a 3D
bubble wake has an inherently electromagnetic nature,
while a 1D wake is purely electrostatic. In 1D, in the
limit a0 ≫ 1, the longitudinal wakefield in any plasma
wave period behind the laser driver is Ez(ζ) ≃ ζ/2, where
ζ is measured from the wake center, where the wake-
field vanishes, and |ζ| ≤ λNp/2, λNp being the nonlinear
plasma wavelength.1 The amplitude of the maximum ac-
celerating field, measured at the back of the wake where
ζ = −λNp/2, is then Ez,max ≃ λNp/4, which can be
rewritten as Ez,max ≃ R‖/2 after identifying λNp/2 with
R‖ (length of the accelerating part of the wake). On the
other hand, if a0 ≫ 1, the maximum wakefield amplitude
generated behind the laser driver is Ez,max ∼ a0, and so,
qualitatively, we obtain the scaling R‖ ∼ a0.

C. Location of the collection volume for self-injected

particles

As noted in Refs. 36 and 37, self-injected electrons in
the bubble wake are initially (i.e., before the passage of
the laser) located within a thin cylindrical shell volume
(collection volume) with a radius that scales with the
laser spot size and a width much smaller than the plasma
skin-depth. These electrons, initially at rest, after recev-
ing the ponderomotive kick from the laser driver, stream
along the “wall” of the bubble wake reaching the back of
the bubble where they are eventually injected and accel-
erated (see the inset in Fig. 2). In Fig. 2 we show (black
diamonds) the location of the center of the collection vol-
ume, r0, as a function of the peak normalized laser field
strength, a0, measured in simulations. Results refer to
γ0 = 10, however we found that r0 has a weak depen-
dence on γ0 for γ0 & 10. The solid red line in Fig. 2 is a
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FIG. 2. Scaling of the location of the center of the collection
volume for self-injected particles (see inset for definition), r0
[diamonds], with peak normalized laser field strength, a0. The
black dashed line is R⊥, while the black solid line is the quasi-
matched laser spot size, namely w0 = 2

√
a0. We can see that

r0 scales with a0 as R⊥ rather than the laser spot size. The
red solid line is the quadratic fit given by Eq. (3). The blue
dashed line is the linear fit given by Eq. (4). The laser-plasma
parameters are L0 = 1, γ0 = 10. We found that r0 has a weak
dependence on γ0 for γ0 & 10.

quadratic fit of the simulated data given by

r0(a0) ≃ −2.0 + 1.4 · a0 − 0.05 · a20 . (3)

A (more simple and less accurate) linear fit of the simu-
lated points, given by

r0(a0) ≃ 0.9 · (a0 − 1) , (4)

is shown as a dashed blue line in Fig. 2. We notice that,
qualitatively, r0 scales with a0 as the transverse bubble
size (R⊥, black dashed line in Fig. 2) rather than the laser
spot size (w0 = 2

√
a0, black solid line). Equation (3) or

Eq. (4) can be used as a guidance in PIC simulations
of the bubble regime to selectively increase the numbers
of numerical particle to be loaded in the region of the
computational domain where the collection volume lies,
and so to improve the statistical description of the self-
injected beam.38,39

D. Threshold for self-injection

For the systematic study of the threshold for self-
injection in the bubble regime, we performed several sim-
ulations corresponding to different points in the (γ0, a0)
plane and, after carefully initializing each simulation with
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FIG. 3. Amount of self-injected charge in the bubble wake
for different values of the wake velocity, γ0, and normalized
laser field strength, a0. Each point is the outcome of a simu-
lation run and the color is related to the amount of injected
charge (black is no injection). The solid red line, which sep-
arates the injection and no-injection domains, is the empir-
ical threshold condition for self-injection given by Eq. (5).
The magenta dashed line (a) is threshold condition given in
Ref. 20; the green dashed line (b) is the threshold condition
given in Ref. 21; the blue dashed line (c) is the threshold
condition given in Ref. 23.

the technique described in Sec. II A, we measured the
amount of self-injected charge in the bubble wake for a
fixed propagation length of the driver. Results are pre-
sented in Fig. 3. Each point is the outcome of a simu-
lation and the color is related to the amount of injected
charge (black is no injection). Two domains (injection
vs. no-injection) are clearly identifiable and the bound-
ary between them is marked by the solid red line. We
find that, in case of a non-evolving laser driver, for any
given bubble wake velocity, self-injection occurs provided
that the peak laser field strength is above a threshold, a∗0,
which depends on the wake velocity. By combining re-
sults from all simulations, the expression for the injection
threshold (solid red line in Fig. 3) is

a∗0(γ0) ≃ A∗

[

1 + (γ0/Γ∗)
2
]1/2

, (5)

where A∗ = 2.75 and Γ∗ = 22. A clear dependence
of the threshold from wake velocity is observed and,
extrapolating in the limit where γ0 is large, we have
a∗0(γ0) ∼ (A∗/Γ∗)γ0, so a∗0(γ0) → ∞ as γ0 → ∞.
As expected, self-injection is not observed in the ultra-
relativistic limit. The magenta dashed line (a) in Fig. 3
is the injection threshold from Ref. 20 (no γ0 dependence
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is described). The green dashed line (b) is the threshold
proposed in Ref. 21, namely a0 & γ2

0/2, and qualitatively
describes the same type of physics seen in our simulations
(existence of a threshold for self-injection). However, our
numerical results show a significantly lower value for the
intensity threshold. For instance, for γ0 = 20, the thresh-
old for injection we obtain is a0 & 3.7, while the model
presented in Ref. 21 predicts a0 & 200, which is rather
high and not in agreement with experiments. This dif-
ference can be ascribed to the fact that the model in
Ref. 21 adopts a simplified analytical expression for the
bubble fields. In our model, a realistic field structure is
retained, improving the description of electron’s trajecto-
ries. More specifically, the model in Ref. 21 assumes the
linear expression for the bubble fields given in Ref. 22,
obtained for a traveling spherical cavity. However, the
actual fields are only linearly varying in the center of the
bubble and show a more complex (non-linearly varying)
structure near the high-density plasma sheath surround-
ing the bubble wake (e.g., field enhancement at the back
of the bubble in both longitudinal and transversal fields).
The blue dashed line (c) in Fig. 3 is the threshold given in
Ref. 23. Also this model assumes a spherical bubble wake
and simplified linearly varying wakefields. The main dif-
ference from the model presented in Ref. 21 consists in
the additional assumption, based on observations from
PIC simulations, that the orbits of the particles reach-
ing the back of the bubble are elliptical. The injection
threshold obtained in Ref. 23 is significantly lower than
the one in Ref. 21, and is in qualitative agreement with
Eq. (5) when γ0 . 60. However, our numerical results
suggest a stronger dependence of the injection threshold
on γ0.
The threshold condition for self-injection given by

Eq. (5) can also be rewritten in terms of a threshold
condition for the laser power, namely P > P ∗(γ0), where
P ∗(γ0) is given by

P ∗(γ0)

Pc
≃ (w∗

0a
∗
0)

2

32
=

(

A∗

2

)3
[

1 + (γ0/Γ∗)
2
]3/2

, (6)

and where we assumed w∗
0 = 2

√

a∗0. We notice that, in

case of a plasma with a background density n0 ≃ 3×1018

e/cm3, we can assume γ0 ∼ 10− 20 [as explained below,
the exact value depends on the details of the (nonlin-
ear) laser-plasma interaction] and so, using Eq. (6), the
threshold for injection is P/Pc & 4− 6, which is in good
agreement with the experimental value given in Ref. 27.
At higher densities, i.e., n0 & 1019 e/cm3, where we can
assume γ0 ≪ Γ∗, we find that the threshold laser power
for self-injection decreases to P/Pc & 2.5, and this is also
the overall absolute minimum power required for self-
injection in the bubble regime.

E. Test-particle simulations of self-injection

The self-injection threshold in the bubble regime can
also be determined by means of test-particle simulations.
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FIG. 4. Test-particle trajectories (same initial condition) for
different values of the wake velocity, corresponding to γ0 =10
(red), 20 (cyan), 40 (blue) and 60 (green), with a0 = 5, L0 =
1, and w0 = 2

√
a0.

Here we integrate the equations of motion for a set of
plasma particles (test-particles) under the effect of the
ponderomotive force and the wakefields. In order to have
a quantitatively correct description of self-injection, an
accurate representation of the wakefield structure is re-
quired. Therefore, we use a numerical expression (wake-
field map) computed from PIC simulations with frozen
laser driver in the ultra-relativistic limit, where self-
injection is absent and so the wake is unloaded. Using a
wakefield map computed, for instance, when γ0 = 1000
to describe the wakefield at a lower wake velocity can
be done since the wake structure has a weak dependence
on the wake velocity, provided that the velocity remains
relativistic (i.e., γ0 ≫ 1). A different wakefield map is
required for any desired laser intensity. Assuming a test
particle initially (i.e., before the passage of the laser) at
rest in the (z, x) plane, and a round ponderomotive laser
driver, then the trajectory of the test particle will remain
in the same plane. The equations of motion for the test
particles are
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=

pz
γ

− β0

dx

dt
=

px
γ

dpz
dt

= − 1

2γ

∂(a2/2)

∂ζ
+

∂Ψ

∂ζ
− px

γ
By

dpx
dt

= − 1

2γ

∂(a2/2)

∂x
+

∂Ψ

∂x
−
(

β0 −
pz
γ

)

By

, (7)

where ζ is the comoving longitudinal coordinate (us-
ing this coordinate the laser driver and the wakefield
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are stationary), x is the transverse coordinate, pz and
px are, respectively, the longitudinal and transverse mo-
mentum of the test-particle, γ = (1 + a2/2 + p2z + p2x),
Ψ is the wake potential, such that Ez = −∂Ψ/∂ζ and
Ex − β0By = −∂Ψ/∂x, where Ez , Ex, By are the com-
ponents of the electromagnetic field in the wake. Both
Ψ and By are taken from PIC simulations with γ0 ≫ 1.
In particular, Ψ is computed from Ez at any transverse

location x, according to Ψ(ζ, x) = −
∫ ζ

+∞
Ez(ζ

′, x) dζ′,
where we assumed Ψ = 0 ahead of the laser pulse. Us-
ing test particles simulations it is possible to explore, for
any given a0 and γ0, if and when self-injection appears.
As an example, in Fig. 4 we show, for a0 = 5, how the
trajectory of a given test particle changes while changing
the wake velocity (we considered γ0 = 10, 20, 40, 60, see
figure for details). Particle trajectories are qualitatively
different for different γ0 and, as expected, no injection
is observed at high γ0. The self-injection threshold ob-
tained exploring the (γ0, a0) parameter space with this
technique is in good agreement with the expression given
by Eq. (5).

F. Hamiltonian analysis of the self-injection physics

The Hamiltonian describing the motion of a generic
test particle in a given 3D wake is

H = γ − β0pz −Ψ . (8)

In case of a non-evolving wake H is a constant of motion.
In particular, H = 1 for a generic background plasma
electron initially at rest. A particle is trapped if its lon-
gitudinal velocity equals the wake phase velocity while
the particle is located within an accelerating and focusing
domain of the wakefield. Denoting by ζ̃, x̃, p̃z, p̃x, γ̃, Ψ̃,
respectively, the longitudinal/transverse coordinate, the
longitudinal/transverse momentum, the relativistic fac-
tor and the wake potential of a particle at moment of
trapping, then, by definition, ũz/γ̃ = β0, and Eq. (8)
with H = 1 gives

Ψ̃ ≡ Ψ(ζ̃, x̃) = −1 +

√

1 + (p̃x)2

γ0
, (9)

which expresses a necessary condition for trapping. In de-
riving Eq. (9) we assumed that self-injection takes place
far behind the laser pulse where the laser field amplitude
is negligible (a ≃ 0). From Eq. (9) we see that trapping
is facilitated, i.e. it requires a less negative potential to
happen, at low phase velocities or when the particle has
a large transverse momentum.
In Fig. 5 (a) we show, for a0 = 5, the transverse phase

space at the moment of injection, (x̃, p̃x), for a set of test
particle simulations corresponding to different values of
the wake velocity such that γ0 = 10 (black), 20 (red), 30
(blue). In Fig. 5 (b) we show, for a fixed wake velocity
(γ0 = 12), the transverse phase space at injection for dif-
ferent values of the peak laser field strength, namely a0 =
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Phase-space at injection (γ0 = 12)
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· a0 = 6.0

FIG. 5. Transverse phase space at moment of injection,
(x̃, p̃x), for test-particle simulations with (a) fixed laser in-
tensity (a0 = 5) and γ0 = 10 (black), 20 (red), 30 (blue).
Simulations with (b) fixed wake velocity (γ0 = 12) and a0 =
3.5 (black), 4.0 (red), 5.0 (green), 6.0 (blue). The other laser-
plasma parameters are L0 = 1, w0 = 2

√
a0.

3.5 (black), 4.0 (red), 5.0 (green), 6.0 (blue). Test par-
ticles were initially at rest (cold plasma) and uniformly
distributed in a rectangular domain in the (z, x) plane
located ahead of the laser pulse and encompassing the
collection volume for self-injected particles for any value
of a0. The total number of particles used in each run de-
pended on the size of the domain, typically we loaded 25
(= 5× 5) - 100 (= 10× 10) test particles within each cell
of the grid over which the wakefields are defined. The
lower (upper) lobe in the figures refers to particles ini-
tially laying in the x > 0 (x < 0) half-plane. We verified
that Eq. (9) is satisfied for all trapped particles. We no-
tice that particles at injection tend to have a rather high
(relativistic) transverse momentum (|p̃x| ∼ 1 − 2 for the
parameters considered in this paper). Also, for fixed a0
and γ0, the values of x̃ and p̃x are inversely correlated,
so p̃x tends to be larger (lower) if injections happens on-
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axis (off-axis). Finally, the extent in phase space of the
injection area becomes larger, for fixed a0, the lower is the
wake phase velocity or, for fixed γ0, the higher is the laser
intensity. This has implications in setting the value of the
initial (i.e., at injection) emittance for LPA beams in the
bubble regime which we expect to be increasingly higher
for laser-plasma parameters progressively away from the
injection threshold given by Eq. (5).

III. WAKE PHASE VELOCITY IN THE NONLINEAR

REGIME

So far, in our study, the velocity of the bubble wake
is assigned and determined solely by the velocity of the
non-evolving ponderomotive laser driver. However, in
case of a fully-self-consistent driver, the velocity of the
wake generated by a short and intense laser pulse prop-
agating in a plasma is different from the laser group
velocity and is determined mainly by the laser driver
evolution as well as by the background density.30 In
Fig. 6 (a) we show the evolution of the laser group ve-
locity γlaser(z) [red solid line] and wake phase velocity
γ0(z) measured at the center [blue solid line] and at the
back [blue dashed line] of the bubble wake for a laser
pulse with a0 = 4.5, L0 = 1, w0 = 2

√
a0 = 4.2, and

ω0/ωp = 90. The laser pulse is focused at the beginning
of the plasma. The plasma profile is uniform after an ini-
tial linear ramp (Lramp = 5). The phase velocity at the
center of the bubble has been measured by tracking the
position of the on-axis point in the wake where the lon-
gitudinal field vanishes, and then computing numerically
the z−derivative. The phase velocity at the back of the
bubble is more difficult to measure owing to the fact that
in this region the electromagnetic fields are rapidly vary-
ing in space (non-linear field structure). To obtain the
estimate of the wake velocity shown in Fig. 6 (a) (blue
dashed line), we first tracked, as before, the phase lo-
cation of the point in the back of the wake where the
longitudinal field is zero. Then we fitted the data with
a high-order polynomial expression in z, and finally we
computed the phase velocity taking the z−derivative of
the fit. In Fig. 6(b) we plot the evolution of the peak
normalized laser field strength a0(z) over the same prop-
agation length. The black dashed line in Fig. 6(a) is the
linear theory prediction (a0 ≪ 1) for the wake phase
velocity, for which γ(linear)

0 = γ(linear)

laser = ω0/ωp = 90. Ana-
lytical results describing, in 1D, laser and wake propaga-
tion when a0 & 1 including the effects of pulse-steepening
and frequency redshifting (i.e., longitudinal pulse evolu-
tion) are discussed in Ref. 30. More specifically, it is
found that in the early stages of the laser-plasma in-
teraction, if a0 ≫ 1, the phase velocity of the back of
the wake is γ(1D)

0 ≃ 0.45ω0/ωp ≃ 40.5 (magenta dashed
line [i] in Fig. 6(a)). However, we expect the actual ve-
locity of the wake to be lower than the 1D result, ow-
ing to the fact that there is transverse evolution of the
laser drive due to self-focusing and the fact that differ-
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FIG. 6. Evolution (a) of the laser group velocity γlaser(z) (red
solid line), wake phase velocity γ0(z) measured at the center
(blue solid line) and at the back of the bubble (blue dashed
line), and (b) normalized laser field strength a0(z) (black
solid line) for a fully-self-consistent simulation with a0 = 4.5,
L0 = 1, w0 = 2

√
a0 = 4.2, and ω0/ωp = 90. The black

dashed line is the linear theory prediction for the wake veloc-
ity γ(linear)

0 = ω0/ωp = 90, the magenta dashed line [i] is the
1D nonlinear wake velocity γ(1D)

0 ≃ 40.5 given in Ref. 30, and
the green dashed line [ii] is the value of γ(3D)

0 ≃ 52 proposed in
Ref. 20. The cyan dashed line is the z−dependent maximum
wake velocity compatible with injection, γ∗

0 (z), computed via
Eq. (5) using the normalized laser field strength a0(z). Dis-
tribution (c) of self-injected electrons as a function of their
initial longitudinal position.
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ent longitudinal slices of the driver experience a different
degree of plasma wave guiding. This results in a mod-
ification of the laser intensity profile and hence of the
shape of the wake. In 3D, an analytical theory of the
nonlinear wake phase velocity is lacking. In Ref. 20, by
using PIC simulations, Lu et al. propose, for the wake
velocity generated by a quasi-matched laser pulse in the
bubble regime, the constant value γ(3D)

0 ≃ ω0/
√
3ωp ≃ 52

(green dashed line [ii] in Fig. 6(a)). From the simula-
tion we observe that, initially, during bubble formation
(z . 100), the wake phase velocity exhibits large fluctu-
ations. When the wake is formed and, as in this case,
the laser pulse is intense (a0 & 1), its velocity is de-
termined mainly by the laser evolution resulting from
the competition between laser self-focusing/diffraction,
plasma wave guiding, self-steepening and frequency red-
shifting. In our simulation conditions (laser at focus at
the entrance of the plasma slab, with laser-plasma pa-
rameters typical of current LPAs), the bubble velocity
is, as expected, lower than that of the driver and lower
than the linear theory prediction. More specifically, the
wake velocity, measured at the center or at the back of
the bubble, settles around γ0 ∼ 18 − 25, while, for the
laser driver, γlaser ≃ 123. We also notice that the 1D
nonlinear prediction γ(1D)

0 overestimates the value of the
wake velocity, due to strong laser self-focusing and slice-
dependent plasma wave guiding.

If the wake velocity evolution is slow enough (i.e., the
velocity does not change too much over the time a plasma
particle interacts with the bubble wake) we can, at any
time, determine if self-injection will occur using Eq. (5)
where the local values of wake velocity and laser intensity
are considered. Using this criteria, we computed, start-
ing from the values of the peak normalized laser field
strength given in Fig. 6(b), the maximum wake veloc-
ity, γ∗

0 (z), compatible with self-injection. The result is
shown in Fig. 6(a) [cyan dashed line]. We expect self-
injection to be possible if the actual bubble phase velocity
γ0(z) measured at the back of the bubble, where injec-
tion takes place, is lower than the threshold value γ∗

0(z).
This happens, according to Fig. 6(a), for z & 150 until
almost z ∼ 500. In Fig. 6(c) we show the distribution
of self-injected electrons as a function of their initial lon-
gitudinal coordinate. We see that self-injection mainly
occurs, as predicted, when the phase velocity is low, i.e.,
for z & 130 until z ∼ 480. The presence of trapped
electrons within the bubble wake (beam loading) affects
the properties of the wake itself (e.g., shape, phase ve-
locity of the back of the bubble) owing to the transverse
electric and magnetic fields associated with the acceler-
ating bunch which modify the trajectories of the plasma
electrons reaching the back of the bubble. This feed-
back, depending on the amount of self-injected charge,
may prevent additional injection. As a consequence, the
threshold condition Eq. (5) can only be applied to pre-
dict self-injection if there is a sufficiently small amount of
self-injected charge so the wakefield structure is approx-
imately that of an unloaded wake.
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FIG. 7. Scaling of the minimum wake velocity measured at
the center of the bubble wake, γ(min)

0 [diamonds], as a func-
tion of the background plasma density expressed in terms of
ω0/ωp. The laser parameters at different densities satisfy
L0 = 1 and w0 = 2

√
a0, with a0 = 4.5. Even though the

details of the phase velocity evolution depend on laser inten-
sity, it is found in simulations that the minimum value of the
phase velocity is independent from a0. The red dashed line
is the empirical fit of the minimum bubble velocity given by
Eq. (10).

We investigated numerically the scaling of the mini-
mum bubble phase velocity at the center of the wake,
γ(min)

0 , changing the laser intensity and the background
plasma density. We found that, if a0 & 2, the mini-
mum value of the phase velocity is independent from a0,
even though the details of the phase velocity evolution
depend on laser intensity. The scaling of γ(min)

0 with den-
sity is shown in Fig. 7, where we plot [black diamonds]
the values of γ(min)

0 measured in a set of simulations with
different plasma densities such that 10 . ω0/ωp . 150.
An empirical fit of the minimum bubble velocity is given
by the simple formula [red dashed line in Fig. 7]

γ(min)

0 ≃ 2.4 ·
√

ω0

ωp
. (10)

Our study assumes a Gaussian laser driver but, as a
consequence of transverse laser dynamics, the laser inten-
sity profile evolves during propagation towards a “coni-
cal” shape (narrower towards the back).40 The conse-
quent change in the ponderomotive force affects particle
orbits modifying the details of the self-injection process.
Assessing the importance of this effect will be matter of
future studies.
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FIG. 8. Amount of self-injected charge in the bubble wake
for different values of the wake velocity, γ0, and normalized
laser field strength, a0, for a warm plasma (Θ = 10 eV). Each
point is the outcome of a test-particle simulation run and the
color is related to the amount of injected charge (black is no
injection). The solid red line is the threshold condition for
self-injection for a cold plasma given by Eq. (5). We notice
that some degree of injection is present, for any given laser
intensity, also for values of the phase velocity which are higher
than the cold threshold value.

IV. SELF-INJECTION IN THE BUBBLE REGIME FOR A

WARM PLASMA

Laboratory plasmas such the ones of interest for LPAs
are not cold. For instance, the plasma created by a short
and intense laser pulse (L0 ∼ 1, a0 & 1) through pho-
toionization has a temperature of the order of the ioniza-
tion potential, i.e., Θ ∼ 10 eV.41,42 For LPAs, the laser-
plasma interaction occurs on a time scale short compared
to the ion motion and to the inverse of the collisional fre-
quency. Such a collisionless plasma is not in local ther-
modynamical equilibrium. In this case plasma electrons
experience relativistic motion (because of the intense
laser field and wakefields) while the plasma temperature
(momentum spread) remains small. In 1D, a relativis-
tic warm plasma theory describing nonlinear laser-driven
plasma waves has been presented in Ref. 43, and trap-
ping of thermal plasma electrons is discussed in Ref. 19.
Here we consider how the self-injection dynamics in a
3D bubble wake is modified in case of an initially warm
plasma. We use a test-particle simulation approach, as
described in Sec. II E, using the wakefield map computed
for a cold plasma at different laser intensities, making
the additional assumption that the wakefield structure
will not be strongly affected by the background plasma
temperature. The initial test-particle distribution is cho-

sen to be uniform in space (as described in Sec. II F) and
Maxwellian in momentum. The total number of particles
used in each run depended on the size of the domain, typ-
ically we loaded 100 - 400 test particles within each cell
of the grid over which the wakefields are defined. Re-
sults are presented in Fig. 8, where each point is the
outcome of a test-particle simulation in the (γ0, a0) pa-
rameter space, and the color is related to the amount of
injected charge (black is no injection) for a warm plasma
with Θ = 10 eV. The red dashed line is the threshold
Eq. (5) obtained from fully-self consistent simulations of
a cold plasma. We notice that some degree of injection is
present for values of the phase velocity which are higher
than the threshold value given by Eq. (5). The effect of
the temperature becomes more important at higher laser
intensities (i.e., a0 & 5.5).

V. CONCLUSIONS

In this paper we presented a detailed numerical investi-
gation, by means of fully self-consistent PIC simulations
and test-particle simulations, of electron self-injection in
the bubble regime for a cold plasma. We studied the
dependence of the injection threshold on peak laser field
strength, a0, and wake velocity, β0 = (1 − 1/γ2

0)
1/2, for

a range of parameters of interest for current and future
LPAs, namely 2 ≤ a0 ≤ 7 and 10 ≤ γ0 ≤ 100. In particu-
lar, we considered the wake generated by a short (L0 ∼ 1)
and intense (a0 > 1) non-evolving Gaussian laser driver
(w0 = 2

√
a0) propagating with a constant velocity in

an uniform plasma. Using a non-evolving driver has the
twofold advantage that (1) self-injection physics is decou-
pled from driver evolution and (2) all the properties of the
wake (e.g., shape, size, amplitude of the electromagnetic
fields, velocity) are determined univocally by the prop-
erties of the laser driver, provided that the laser-plasma
interaction is turned on adiabatically in the simulation.
Under these controlled conditions we determined that,
for a non-evolving driver, self-injection occurs, and we ex-
plored the dependence of the threshold for self-injection
on laser driver intensity and wake velocity. We obtained,
numerically, that for any given value of the wake velocity
the minimum laser intensity required for self-injection is
a∗0 ≃ A∗[1 + (γ0/Γ∗)

2
]1/2, where A∗ ≃ 2.75 and Γ∗ ≃ 22.

We found, as expected, that in the ultrarelativistic limit,
γ0 → ∞, self-injection does not occur since a∗0 → ∞. The
threshold condition for self-injection can also be rewrit-
ten as a condition on the laser power. For instance, for
a plasma with n0 ≃ 3 × 1018 e/cm3, we found that the
minimum power required for self-injection is such that
P/Pc & 4−6. The calculation is in agreement with exper-
imental results.27 Together with the self-injection thresh-
old we also analyzed the scaling of the bubble shape and
size with the laser intensity, showing that significant dif-
ferences from a round bubble wake are observed when
a0 & 5. Finally, we characterized the dependence of the
location of the center of the collection volume (i.e., the
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volume where the particles that will be self-injected are
initially located) on the laser intensity. Results obtained
in this case can be used to improve PIC simulations of
the bubble regime by selectively increasing the number
of numerical particles to be loaded in the region of the
computational domain where the collection volume lies,
and so to improve the statistical description of the self-
injected beam.

The self-injection physics has been analyzed also by
means of test-particle simulations, where the trajectory
of a generic plasma particle is integrated taking into ac-
count the ponderomotive push from the driver and the
stationary electromagnetic fields associated to the bub-
ble wake. The description (map) of the wakefields is ob-
tained, for any given a0, from fully-self consistent PIC
simulations in the ultrarelativistic limit, where injection
is absent and so the bubble wake is unloaded. Since the
structure of the wakefield is a weak function of γ0, pro-
vided that γ0 ≫ 1, we used the same wakefield map to an-
alyze the phase velocity dependence of test-particle tra-
jectories. Even with this simplified approach (the wake
velocity is the only free parameter once the laser inten-
sity, and so the wakefield map, is fixed) we found that
self-injection occurs at low wake velocity, in agreement
with the threshold condition for self-injection described
in Sec. II D. Test-particle simulations also allow to per-
form a Hamiltonian analysis of the trapping process. In
particular, we verified that for trapped particles at mo-
ment of injection the condition Ψ̃ = −1+

√

1 + (p̃x)2/γ0
holds. Furthermore, we showed that particles at injec-
tion have an high (relativistic) transverse momentum and
that the extent (spread) in phase space of the injection
area becomes larger at low wake phase velocity and/or
high laser intensity. This has implications in setting the
initial (i.e., at injection) value of the emittance for LPA
beams in the bubble regime which, consequently, we ex-
pect to be increasingly higher for laser-plasma parame-
ters progressively beyond the self-injection threshold.

The threshold for self-injection has been derived in case
of a non-evolving laser driver. If the driver evolves (be-
cause of self-focusing, plasma wave guiding and/or self-
steepening), the bubble wake velocity is no longer equal
to the driver velocity but is determined by its evolu-
tion. In this case, provided that the evolution rate is
slow enough, we have shown that the actual bubble phase
velocity, which is, in general, significantly different from
the laser driver group velocity, is the relevant parame-
ter to be considered for the self-injection physics. Even
though the evolution of wake velocity shows a complex
behavior due to the interplay of different nonlinear ef-
fects, we have shown that, in our conditions, the mini-
mum wake velocity measured at the center of the wake
in simulations can be expressed by the simple expression
γ(min)

0 ≃ 2.4(ω0/ωp)
1/2, and this value is independent of

a0.

Our study assumed a transverse Gaussian intensity
profile for the laser driver. However, during propaga-
tion, the laser intensity profile evolves towards a “coni-

cal” shape (narrower towards the back). The resulting
change in the ponderomotive force affects particle orbits
and modifies the details of the self-injection process. As-
sessing the importance of this effect will be done in future
studies.
Finally, we investigated how the self-injection dynam-

ics in a 3D bubble wake is affected by a plasma with an
initially non-zero temperature. We found that the self-
injection threshold for a warm plasma is lower than the
one for a cold plasma. The effect is relevant for the cor-
rect interpretation of PIC simulation results, since simu-
lations at low resolution or with a low order interpolation
scheme for force/current/charge evaluation always show
some degree of numerical heating which may results in
artificial/spurious self-injection and, consequently, in an
incorrect description of LPAs physics.
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